Date & Time
Search
Datum
{{range.dates[index].day}}
{{range.dates[index].date}}
Time
Mornings Noon Afternoons Evenings
  • from
  • to
  • o'clock
Topic
Event location
Event
Properties
{{item.name}}
{{item.name}}
Exhibition venue

(please choose the desired areas)

Lecture language
Format

Event database

The event database contains all event-related information for the World of Photonics Congress.

Back to the EventList

In vivo multimodal fibre-probe spectroscopy for glioblastoma detection in mouse model

JUN
24
2019
24. JUN 2019

Poster Hall B0 European Conferences on Biomedical Optics (ECBO) > Preclinical and Clinical Optical Diagnostics > Lunch Break and Poster Session - Monday

12:45-14:15 h | Hall B0 Hall B0, ICM

Subjects: Biophotonics and Medical Engineering

Type: Poster

Speech: English

Glioblastoma (GBM) is the most common and aggressive malignant brain tumour in adults. Patient survival rates are strongly dependent on the successfully resection of the tumour. In this framework, multimodal optical spectroscopy could provide a fast and label-free tool for improving tumour detection and guiding the removal of diseased tissue. In this study, we used an optical fibre-probe system combining multiple spectroscopic techniques for in vivo examination of normal and GBM tissues in mouse brain. Specifically, the probe – based on a fibre-bundle with optical fibres of various size and properties – allowed performing spectroscopic measurements based on fluorescence, Raman, and diffuse reflectance spectroscopy though two optical windows implanted on the head of each animal. Two visible laser diodes were used for fluorescence spectroscopy, a laser diode emitting in the NIR was used for Raman spectroscopy, and a fibre-coupled halogen lamp for diffuse reflectance. All spectral recordings were done when the animals were anesthetized; optical inspection required less than 4 minutes for each animal. The recorded data were analysed using Principal Component Analysis (PCA) for obtaining an automated classification of the examined tissues based on the intrinsic spectral information provided by Raman and reflectance spectroscopy. The presented method demonstrated high sensitivity and specificity in discriminating GBM from normal brain. Furthermore, we found that the multimodal approach is crucial for improving diagnostic capabilities beyond what can be achieved from individual techniques.

Informations

Location

Eingang
Nord-West
ICM
Eingang
Nord
Eingang
West
Atrium
Eingang
Nord-Ost
Eingang
Ost
Conference
Center Nord
Freigelände
C1
C2
C3
C4
C5
C6
B0
B1
B2
B3
B4
B5
B6
A1
A2
A3
A4
A5
A6

More Events